簡介
摘 要
為積極改善地層下陷問題,政府歷年來已陸續投入相關防治工作,
整體地層下陷情勢已明顯獲得改善,但中南部地區下陷面積仍占臺灣下
陷面積多數。過去研究顯示濁水溪南側雲林地區的下陷機制關鍵課題包 括:
(1) 傳統地層下陷之相關研究僅考慮細顆粒土層(粉土、黏土)因孔隙水壓消散之壓密行為,而粗顆粒土層(礫土、砂土層)常忽略其變形或以彈性理論進行討論。惟現地地層下陷分層監測(地陷監
測井)與地質架構綜合分析結果顯示,粗顆粒土層分布較大,且呈現較大下陷比例,非傳統所認知的彈性變形或可忽略其下陷 量。
(2) 地表水準檢測(總土層下陷)與地陷監測井(300公尺厚度土層下陷)下陷監測分析顯示,300公尺深度以下土層仍有一定下陷量,須補足深層水文地質架構及水土力學參數,據以探討深層土層變形行為。
(3) 地下水位及地層下陷比較顯示,長期地下水位隨水情呈週期性變化但無明顯下降趨勢,而地層下陷仍持續發生。
(4) 彰化雲林同屬濁水溪沖積扇,惟近年觀測資料與分析成果顯示,於相同防治計畫推動下,彰化地陷控制結果優於雲林,需 進一步瞭解其沉陷機制差異等相關課題。
前期計畫(110~112年度)以土壤K0壓縮試驗,模擬現地含水層與阻
水層土壤受不規則之有效應力變化壓縮行為,室內壓縮成果與現場磁環 監測結果一致,驗證含水層震陷壓縮與阻水層壓密中行為。對於地層下陷之推估問題,基於土壤力學觀點,黏土建議以單向度壓密理論進行依時壓密量評估,而砂土則以考量震陷效應之砂土壓縮評估模式進行壓縮量評估。
本年度(113年)主要工作項目包含於彰化縣溪湖鄉中央公園(原湖南
國小)進行400m地質鑽探取樣、室內水文與壓縮性質試驗、沉陷量評析
摘-1
與減抽水量探討等,提供區域性地下水管理策略研擬之參考。彰化沉陷量推估成果係依「由室內試驗成果推估地表沉陷量流程」依據系列壓縮 性質試驗,建立彰化試驗地區不同用水情境下,分層地下水波動與預估
壓縮量之關係。並研擬以地下水位管控進行沉陷量控制作為,評估預達到設定管控地下水位位所需之地下水減抽量,提供相關下陷防治策略研擬之參考,據以提升地層下陷管理成效。本年度計畫完成之主要項目如 下:
一、400m地質鑽探與HQ取樣
本計畫完成溪湖中央公園400公尺HQ全取岩心,16支薄管取樣與
100組土壤物性試驗,並建立此地區的岩心柱狀圖。地表至深度400公尺所鑽出岩心皆為未固結堆積層,從堆積層組成特性及層序,地表至地下400公尺可細分64層。本處岩心以黏土、泥及粉土層(27.25%)、極細砂及細砂層(20.54%)、中砂至極粗砂層(38.02%)及礫石層(12.61%)為主。另經由岩心判識結果顯示於深度GL.-373公尺以下砂層透水性良好,因此在鑽探孔內放置直徑1.5吋PVC管,於GL.-373~-385公尺處開篩,上阻水層以皂土封層。管中並裝設電子式水壓計,建立自動化傳輸系統,掌握300 公尺以下地下水位變化。
二、地層壓縮機制
台灣中南部平原地區受地層下陷影響,引致地上建築物損害、防災
設施設計高不足及海水倒灌等問題。地層下陷問題中地下水波動對地層形成一反覆加載的情況,其對分層阻水層與含水層壓縮行為之影響有待釐清,且Hung et al. (2012)依現場監測成果指出彰化大城鄉1997至2010 年之累積下陷量中82.8%來自於含水層,說明砂土壓縮行為不可忽視。水利署(2020)彰化各含水層壓縮比例圖(摘圖1),其中以湖南國小代表溪湖鎮地區,可估算其地層含水層壓縮量貢獻為86%,則阻水層壓密貢獻量為14%;而溪州國小代表溪州鄉地區,其含水層壓縮量為74%,則阻水層壓密貢獻量為26%。說明為掌握沖積扇地層下陷行為,對於含水層
摘-2
與阻水層土壤壓縮(密)行為應以釐清。
摘圖1 彰化地區地層下陷井各含水層壓縮比例圖(修改自水利署,2020)
為驗證濁水溪沖積扇地層不同土壤類型之壓縮機制,計畫採用Chang and Chou (2019)提出之改良高壓K0壓密儀(摘圖2),壓密儀三軸室同Rowe cell概念進行設計,提供可控之力學與水力邊界,並維持試體K0 狀態,可模擬實際土壤元素於地層下陷應力狀態變化,探討孔隙水壓波 動引致不同土層壓縮之機制,並建立相關評估參數。
摘圖2 高壓K0壓密儀 (Chang and Chou,2019)
地層下陷常以壓密理論解釋阻水層壓密變形行為,惟單向度壓密理
摘-3
論中,總應力荷重增加為定值,不隨時間改變,然而地下水受自然或人為因素,造成有效應力具依時變動特性(time dependency),在產生超額孔隙水壓後,可能發生消散尚未完成,但致使壓密產生的荷重因素已然消失。由水利署長期建置之地層下陷井與地下水觀測站資料,以複合壓 縮試驗(Hybrid compression test)概念,輸入現地地下水監測數據作為加載邊界,驗證含水層高滲透性砂土壓縮與阻水層低滲透性土壤壓密受地下孔隙水壓反覆波動而引致壓縮(密)行為。
含水層受地下水波動引致之壓縮行為主要以震陷理論進行詮釋,室
內壓縮試驗成果可吻合現場磁環監測數據(參見摘圖3),震陷量大小受地下水波動幅度、反覆加載次數與現況堆積狀態影響。摘圖4為為秀潭國小阻水層變載重壓密試驗成果,試驗採用等值排水路徑為3.05 m進行反覆壓密,比對現地磁環#12與#13磁環所夾之壓縮趨勢,驗證阻水層材料依時壓密行為,而依時壓密量受地下水波動幅度、阻水層平均壓密度與等值排水路徑影響。
摘圖3 現地水壓縮試驗與磁環數據比對成果
(以秀潭國小含水層195m砂土為試驗對象)
摘-4
摘圖4 阻水層變載重壓密試驗與現地磁環監測比對
(以秀潭國小阻水層150m黏土為試驗對象)
三、雲林扇央沉陷中心分層壓密與壓縮精進評估成果
由土壤力學觀點考量壓縮性時,土壤變形主要受土壤類型、應力路
徑與初始狀態等因子影響。土庫國中近20年300m累積壓縮量變化,可發現在正常水文條件下,累積壓縮量有逐漸趨緩之趨勢,惟2021年大旱情況致使壓縮變化顯著增加,說明雲林地區地下水與地層土壤交互作用為 評估下陷變化之關鍵。地質力學架構係依據不同土層壓縮機制進行分層,以低滲透性土壤考量壓密中行為,高滲透性土壤考量震陷行為。
113年度精進「由室內試驗成果推估地表沉陷量流程」,提出低滲
透性土壤(阻水層材料)須考量乾濕季地下水波動造成土壤壓密行為荷重具時變性(time-varing)效應,其壓密量以依時壓密模式進行推估,可計算 阻水層隨不同用水情境之分層壓密量變化。
推估常時水位波動振幅下沉陷中心單站地陷井可能地表下陷量,並
依含水層/阻水層壓縮及300公尺範圍內/範圍外下陷比例關係(以近五年地陷監測井及共站水準點監測資料進行統計),推估總土層厚度下陷量,
摘-5
結果彙整於摘表1。沉陷中心於現況水壓情境下未來地表累積下陷量(年下陷速率增量小於1mm)分布情勢如摘圖4所示,可發現鄰近高鐵南北向 沿線仍具較高下陷潛勢。
摘表1 精進雲林沉陷中心單站地表下陷量推估成果摘錄
地層
下陷井
測站 土層組成
比例
(依實際300m鑽探
成果估算) 300m
簡化力學壓縮地質模型
推估值(cm) 地陷井監測範圍 下陷量推估(cm)
[等值 400米厚度]
含
水
層
(%) 阻
水
層
(%) 壓縮量
(含水層) 壓密量
(阻水層) 內、外下陷比例 113年 114年 終期
範圍內
(約 300
公尺) 範圍外
(300公尺
外)
土庫
國中 83 17 33.9 11.1 71% 29% 8.6 4.9 63.5
秀潭
國小 83 17 40.6 8.6 83% 17% 8.5 4.8 59.7
元長
國小 73 27 42.0 18.3 96% 4% 7.5 4.3 63.1
舊庄
國小 65 35 28.2 10.9 85% 15% 6.6 3.7 61.3
客厝
國小 82 18 33.1 10.9 85% 15% 6.9 4.0 51.9
備註 1.
2.
3.
4. 本計畫評估成果係依設定地下水波動情境、地層簡化分層與壓縮(密)模式迴歸參數成果
進行計算,若地下水波動之輸入應力振幅改變,成果須重新評估。
含水層與阻水層相關壓縮(密)模式參數僅適用於試驗地區土樣,不同區域地層建議可參考本計畫提出之推估流程,以現地土樣搭配室內試驗,建立該區之模式參數。
現有阻水層壓密量評估結果係依雲林元長國小薄管土樣進行系列定振幅壓密試驗求得,
部分測站因阻水層厚度與阻水層壓密中行為可能與元長國小不同造成壓密量評估結果偏不保守。建議後續可持續進行不同測站不同深度之K0反覆壓縮試驗,以回饋至模式中。本研究依所列地質模型推估,其可靠度依現地土層厚度與土層類型不同而有所差異,建議須依現地監測與資料更新,進行定期滾動性檢核。
四、彰化溪湖鎮與溪州鄉單站沉陷量與減抽評估成果
(一)由室內試驗成果推估地表下陷量
考量目前彰化地區阻水層定振幅試驗成果數量仍有不足,因此,
其中阻水層壓密量推估採長期磁環分層壓縮監測成果進行估算。摘圖5為彰化地區地層下陷井各含水層壓縮比例圖,其中以湖南國小代表溪湖鎮地區,可估算其地層含水層壓縮量貢獻為86%,則阻水層壓密貢獻量為14%;而溪州國小代表溪州鄉地區,其含水層壓縮量為74%,則阻水層壓密貢獻量為26%。摘圖6為溪湖鎮與溪州鄉單站地
摘-6
表沉陷量推估成果,詳細數值彙整於摘表2。
摘圖5 彰化地區地層下陷井各含水層壓縮比例圖(摘自水利署,2020)
45.0
40.0
35.0
30.0
25.0
20.0
15.0
10.0
5.0
0.0
溪洲運動公園溪湖中央公園
0 20 40 60 80 100 120
年
摘圖6 彰化地區單站地表沉陷量推估成果
摘表2 彰化地區單站終期下陷量與時間推估成果彙整表
地層下陷井測站 113年
累積下陷量
(cm) 114年
累積下陷量
(cm) 115年
累積下陷量
(cm) 推估
終期下陷量
(cm) 推估
終期時間
(年)
溪湖中央公園站 5.8 3.4 2.4 33.8 56
溪州運動公園站 5.9 3.4 2.4 34.5 57
備註 1.
2. 本計畫評估成果係依設定地下水波動情境、地層簡化分層與壓縮(密)模式迴歸
參數成果進行計算,若地下水波動之輸入應力振幅不同,成果須另行評估。
含水層與阻水層相關壓縮(密)模式參數僅適用於試驗地區土樣,不同區域地層建議初步可參考本計畫提出之推估流程,長期仍需以現地土樣搭配室內試驗,建立該區之模式參數。
摘-7
摘圖7為彰化溪湖鎮與溪州鄉近五年地下水波動應力振幅統計
結果,與摘圖8雲林沉陷中心控制水位站地下水乾濕季差值統計結果進行比較,成果顯示雲林地下水波動應力振幅(∆��約為彰化地區之3 倍大小。因此以1/3倍之振幅輸入土庫國中簡化地質分析模型中(成果 如摘表3),可發現在振幅縮小的情況下,推估震陷量與壓密量都有明顯縮小,其穩定時間可由原本接近百年之情況,縮減至34年。可說明彰化沉陷量相較雲林沉陷中心不顯著之原因之一為地下水波動應力振幅較小,而區域地下水波動行為是控制彰雲地下沉陷行為之重要關鍵。
摘圖7 彰化溪湖鎮與溪州鄉近五年地下水波動應力振幅統計結果
摘圖8 雲林沉陷中心近年地下水波動應力振幅統計結果
摘-8
摘表3 彰化地區單站終期下陷量與時間推估成果彙整表
輸入應力振
幅 推估震陷量
(cm) 推估壓密量
(cm) 終期下陷量
(cm) Nstable (年)
1倍Δu 47.8 15.7 63.5 92
1/3倍Δu 19.5 3.0 22.5 34
備註 1.
2. 本計畫評估成果係依設定地下水波動情境、地層簡化分層與壓縮(密)模式迴歸參數
成果進行計算,若地下水波動之輸入應力振幅不同,成果須另行評估。
含水層與阻水層相關壓縮(密)模式參數僅適用於試驗地區土樣,不同區域地層建議初步可參考本計畫提出之推估流程,長期仍需以現地土樣搭配室內試驗,建立該區之模式參數。
(二)以沉陷量控制為目標之地下水減抽量評析
本計畫已分別完成地下水位與抽水量、地層下陷與地下水位振
幅關係式之建立,配合地下水位振幅與地下水位變化之關係建立,可據以評析以下陷控制為目標所需之地下水減抽量。採用溪湖中央公園分層1、2與溪州國小分層1代表性觀測井2017年至2023年間1月至5 月逐月平均地下水位洩降值的一半為代表性觀測井之地下水位年振幅。
假設各分層之地下水位於5月份(最低水位)回升0.5公尺,1月份
地下水位維持不變(即各分層之水位年振幅減小0.25公尺),經由線性內插可獲得各分層水位於振幅減小0.25公尺目標下,1月至5月之地下 水位變化。進一步統計1月至5月原地下水位與目標水位之差值,可獲得目標條件1月至5月之逐月地下水位回升量。透過各分層單位地下水位洩降之抽水量關係,可推估目標水位回升條件下(年振幅減小
0.25公尺)於枯水期之地下水減抽水量。
2017~2023年平均水位所計算之水位振幅及各含水層水位回升1
公尺(振幅減小0.5公尺)之水位振幅條件下,溪湖中央公園(僅減抽分層1及分層2)與溪州國小(僅減抽分層1)未來15年下陷變化情勢參見摘圖9及摘圖10,顯示減抽地下水使水位振幅減小可減緩下陷發展潛勢。
摘-9
摘圖9 溪湖中央公園地下水位回升0.5公尺之地層下陷變化圖
摘圖10 溪州國小地下水位回升0.5公尺之地層下陷變化圖
摘-10
Abstract
To clarify the issue of land subsidence, the government has invested in various mitigation efforts over the years, resulting in improvements in land subsidence conditions. However, the central and southern regions still account for the majority of Taiwan's subsidence areas. Previous studies have identified the subsidence mechanisms in the Yunlin region south of the Zhuoshui River. Nevertheless, several critical issues remain that require further investigation, such as:
(1) Previous studies on land subsidence focused on fine-grained soils (silt and clay) and often treated coarse-grained soils (gravel and sand) as elastic or negligible. However, monitoring and geological analyses show that coarse-grained soils contribute significantly to subsidence, contrary to traditional assumptions.
(2) Monitoring data reveal measurable subsidence below 300 meters, highlighting the need for deeper hydrogeological models and soil mechanics parameters to analyze deep-layer deformation.
(3) A comparison of groundwater levels and land subsidence shows that while groundwater levels fluctuate cyclically without a clear downward trend, subsidence continues.
(4) Both Changhua and Yunlin lie on the Zhuoshui River alluvial fan. However, recent data indicate that subsidence control in Changhua has been more effective than in Yunlin under similar mitigation efforts, requiring further study on the differences in subsidence mechanisms.
In the previous project (2021–2023), K₀ compression tests simulated
the compression behavior of aquifers and aquitards under irregular effective
Abs-1
stress changes. The laboratory results aligned with field magnetic ring monitoring, validating aquifer settlement and aquitard consolidation
behavior. For subsidence estimation, soil mechanics suggest using one-
dimensional consolidation theory for clay to assess time-dependent settlement, while sand should be evaluated using a compression model that accounts for settlement effects.
1、400m stratum drilling and HQ sampling
This project completed a 400-meter HQ core drilling at Xihu Central Park, along with 16 thin-tube samples and 100 soil property tests, producing a stratigraphic column for the area. The cores, extending from the surface to
400 meters depth, consist entirely of unconsolidated deposits, which were
subdivided into 64 layers based on composition and stratigraphy. The core materials are primarily clay, mud, and silt (27.25%), very fine to fine sand (20.54%), medium to very coarse sand (38.02%), and gravel (12.61%). Core analysis identified permeable sand layers below GL.-373 meters, prompting the installation of a 1.5-inch PVC pipe in the borehole. A screened section was placed between GL.-373 and -385 meters, sealed above by bentonite. An electronic pressure gauge was installed in the pipe, connected to an
automated transmission system to monitor groundwater level changes below
300 meters.
2、Mechanism of ground subsidence in Zhuoshui River alluvial fan
The central and southern plains of Taiwan face issues from land subsidence, such as building damage, inadequate disaster prevention facilities, and seawater intrusion. Groundwater fluctuations cause repeated loading on the strata, affecting the compression behavior of aquifers and aquitards, which requires further clarification. Hung et al. (2012) found that
82.8% of the cumulative subsidence in Dacun Township, Changhua from
Abs-2
1997 to 2010 was due to the aquifer. According to the Water Resources Agency (2020), aquifer compression contributes 86% to subsidence in Xihu Township and 74% in Xizhou Township, indicating the need to further understand the compression behavior of both aquifers and aquitards.
This project adopts the subsidence simulator proposed by Chang and
Chou (2019). The simulator adoptes the Rowe’s cell concept to maintain the K0 condition and controllable hydraulic and mechanical boundaries. The simulator is used to mimic the stress conditions of long-term groundwater fluctuations on the soil element, to investigate the compression mechanism and prediction parameters.
Land subsidence is often explained by consolidation theory, but one-
dimensional consolidation assumes constant total stress. In reality, groundwater fluctuations cause effective stress to vary over time, impacting compression behavior. Using data from subsidence wells and groundwater monitoring, this study validates that high-permeability aquifers and low- permeability aquitards experience compression due to fluctuating pore water pressure. Aquifer compression is explained by settlement theory, with test results aligning with field data. Settlement is influenced by groundwater fluctuation, loading cycles, and deposition conditions. Confirming time- dependent consolidation affected by groundwater fluctuations and drainage path.
3、Soil compressibilitys in the center of subsidence area
From a soil mechanics perspective, soil deformation is influenced by factors such as soil type, stress path, and initial conditions. Over the past 20 years, the cumulative compression at Dongku Junior High School has shown a gradual slowing trend under normal hydrological conditions. However, during the severe drought of 2021, significant increases in compression were observed, indicating that the interaction between groundwater and soil in
Abs-3
Yunlin is crucial for assessing subsidence. The geological framework is
layered based on different compression mechanisms, considering
consolidation behavior for low-permeability soils and settlement behavior for
high-permeability soils.
(1) Compressibility in Zhuoshui River alluvial
This year, the process of estimating surface subsidence from laboratory test results was refined. For low-permeability soils (aquitard materials), groundwater fluctuations between dry and wet seasons must be
considered, as they cause time-varying consolidation effects. The
consolidation amount is estimated using a time-dependent consolidation model, allowing for the calculation of aquitard compression under various water use scenarios.
The subsidence at the center of the monitoring station is estimated based on the amplitude of groundwater fluctuations, along with
compression ratios for aquifers/aquitards and subsidence proportions
within or outside the 300-meter range (using data from the past five years of subsidence monitoring wells and co-located leveling stations). The projected future surface subsidence (with an annual rate increase of less than 1mm), indicating that areas along the north-south high-speed rail line still exhibit higher subsidence potential.
Due to the insufficient number of long-term vibrational amplitude
test results for aquitard compression in Changhua, the estimation of aquitard compression is based on long-term magnetic ring stratified
compression monitoring data. For Hunan Elementary School, representing
the Xihu Township area, the aquifer compression contributes 86%, with the aquitard contributing 14%. In contrast, for Xizhou Elementary School, representing Xizhou Township, the aquifer compression contributes 74%,
Abs-4
with the aquitard contributing 26%.
Based on the statistical results of groundwater fluctuation stress amplitude in Xihu Township and Xizhou Township, Changhua over the past five years. When compared with the statistical results of the groundwater dry-wet season difference at the Yunlin subsidence center control water level station, it is evident that the groundwater fluctuation stress amplitude (∆��in Yunlin is approximately three times greater than that in Changhua. Therefore, by applying a reduced amplitude of one-third to the simplified geological analysis model of Dongku Junior High School, it is observed that both settlement and compression estimates significantly decrease with the reduced amplitude. The stabilization time, previously approaching 100 years, is shortened to 34 years. This suggests that one of the reasons for the less significant subsidence in Changhua compared to Yunlin is the smaller groundwater fluctuation stress amplitude, with regional groundwater fluctuation behavior being a key factor controlling the subsidence behavior in both Changhua and Yunlin.
(2) Groundwater withdrawal reduction analysis
This project has established relationships between groundwater levels and pumping rates, subsidence, and groundwater level amplitude. Based on these relationships, we can analyze the required groundwater
reduction for subsidence control. Representative observation wells at Xihu
Central Park (F1 and F2) and Xizhou Elementary School (F1) were used to calculate the average monthly groundwater level drop from January to
May, between 2017 and 2023, with half of this drop representing the
annual groundwater level amplitude.
Assuming that the groundwater level in May (lowest point) rises by
0.5 meters, and the January groundwater level remains unchanged (i.e.,
Abs-5
the annual amplitude decreases by 0.25 meters), linear interpolation is used to obtain groundwater level variations for each layer between January and May under the target condition of a 0.25-meter decrease in amplitude.
By further calculating the difference between the original groundwater
levels and the target levels, the monthly groundwater level rise from January to May can be estimated. Using the relationship between the water level drop and groundwater withdrawal for each layer, the groundwater reduction needed during the dry season for the target water level rise (annual amplitude reduced by 0.25 meters) is estimated.
Under the conditions of a 1-meter rise in groundwater level (amplitude reduced by 0.5 meters) from the average water levels between
2017 and 2023, the future subsidence potential for Xihu Central Park (with
reduction only in F1 and F2) and Xizhou Elementary School (with reduction only in F1) over the next 15 years. These results demonstrate that reducing groundwater extraction to decrease water level amplitude can slow the development of subsidence.
Keyword: Subsidence, Groundwater fluctuation, Shakedown theory, Partially
consolidated, Compressibility mechanism, Settlement assessment.
Abs-6